Convergence Rate of Coefficient Regularized Kernel-based Learning Algorithms

نویسندگان

  • Sheng Baohuai
  • Ye Peixin
  • Yu Wangke
چکیده

We investigate machine learning for the least square regression with data dependent hypothesis and coefficient regularization algorithms based on general kernels. We provide some estimates for the learning raters of both regression and classification when the hypothesis spaces are sample dependent. Under a weak condition on the kernels we derive learning error by estimating the rate of some K-functional when the target functions belong to the range of some Hilbert-Schmidt integral operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

On the Convergence Rate of Kernel-Based Sequential Greedy Regression

and Applied Analysis 3 The kernel-based greedy algorithm can be summarized as below. Let t be a stopping time and let β be a positive constant. Set f̂0 β 0. And then for τ 1, 2, . . . , t, define ĥτ , α̂τ , β̂τ argmin h∈Ĥ,0≤α≤1,0≤β′≤β Ez ( 1 − α f̂ τ−1 β αβ′h ) , f̂ τ β 1 − α̂τ f̂ τ−1 β α̂τ β̂τ ĥτ . 1.6 Different from the regularized algorithms in 6, 12, 14–18 , the above learning algorithm tries to rea...

متن کامل

Regularized Policy Iteration

In this paper we consider approximate policy-iteration-based reinforcement learning algorithms. In order to implement a flexible function approximation scheme we propose the use of non-parametric methods with regularization, providing a convenient way to control the complexity of the function approximator. We propose two novel regularized policy iteration algorithms by addingL-regularization to...

متن کامل

Convergence analysis of online algorithms

In this paper, we are interested in the analysis of regularized online algorithms associated with reproducing kernel Hilbert spaces. General conditions on the loss function and step sizes are given to ensure convergence. Explicit learning rates are also given for particular step sizes.

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013